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Motivation

I Two important features of models:
I Interpretability/parsimony
I Generalizability/predictive power

I Risk preference models
I Certainly interpretable and parsimonious
I Known to fit well in sample but may be issues with out-of-sample prediction
(eg, Camerer 1992)



Our Contribution

I Test out-of-sample performance of utility models in two settings:
I Changing stakes
I Increasing complexity of gambles

I Provide alternative data and methods to
1. Make more accurate predictions out-of-sample
2. Get better estimates of treatment effects



Typical Choice Problem



Choice Environment

I Choose between two lotteries, A and B
I Represent in two Machina triangles:

I Triangle 1: outcomes $1, $10, $30
I exterior: up to two outcomes possible in any lotter
I interior: up to three outcomes possible in any lottery

I Triangle 2: outcomes $0, $5, $20
I exterior only

I 199 lottery pairs total
I Participants see random set of 80 pairs, shown sequentially
I Lottery A along legs of triangle, while lottery B is along hypotenuse
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Treatments

Treatment Question(s)
Real Which option do you prefer? [1 = option A, 0 = option B]
Hypothetical Hypothetically, which option do you prefer?
Hypothetical likelihood Hypothetically, how likely would you be to choose Option

A over Option B? [1-5]
Vicarious hypothetical How likely would a typical Stanford undergraduate student

be to choose Option A over Option B?
Subjective Choosing which option would indicate a greater willingness

to take risks?
Choosing which option would indicate better judgment?
Which option is more difficult to evaluate?



Utility Models
1. Expected utility with constant relative risk aversion:

U(p, x) =
∑

i
pixαi

2. Cumulative prospect theory from Kahneman and Tversky (1992):

U(p, x ; g) = (π(p3, g)− π(0, g))xα3
+ (π(p2 + p3, g)− π(p3, g))xα2
+ (π(p1, g)− π(p2 + p3, g))xα1

where

π(p, g) = pg

(pg + (1− p)g)(1/g)



Errors

Luce decision error formulation:

P(choose A) = U(A)
1
µ

U(A)
1
µ + U(B)

1
µ

I µ→ 0: no mistakes (ie all probabilities = 0 or 1)
I µ→∞: flip a coin (ie all probabilities = 1

2)

Parameter estimates



Non-Choice Data Methods: Univariate Models

I Regress real choice frequency on hypothetical in triangle 1 exterior at choice
problem level:

real1i = α + βhyp1i + ε

I Then use estimated coefficients to predict real in triangle 2 exterior from
hypothetical in triangle 2 exterior:

r̂eal2i = α̂ + β̂hyp2i

I Repeat with vicarious hypothetical likelihood mean as predictor
I Same procedure to predict to triangle 1 interior



Non-Choice Data Methods: LASSO

I Large number of predictors:
I Means for all hypothetical and subjective questions
I For all Likert-scale questions, fraction of responses = 1, ≤ 2, ≤ 3, etc

I Use regularized regression (LASSO):

minβ
∑

i
(yi − βxi)2 + λ||β||2

I Regularization parameter λ set using cross-validation
I Estimation and prediction as with univariate OLS models



Prediction Metrics

I Bias (average prediction error):

1
N

∑
i
|r̂eal i − reali |

I mean-squared prediction error (MSPE):

1
N

∑
i
|r̂eal i − reali |2

I Calibration score is |β − 1|, with estimated β in the regression equation:

reali = α + β r̂eal i + εi
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Prediction Statistics: Pooled

Label Bias Mean Squared Err Calibration Score
Expected utility: rep agent 0.048 0.035 0.187
Prospect theory: rep agent 0.045 0.033 0.163
Expected utility: hetero agents -0.024 0.023 0.085
Prospect theory: hetero agents -0.017 0.024 0.014
Non-choice: all vars 0.012 0.013 0.267
Non-choice: all hyp vars 0.014 0.014 0.319
Non-choice: hyp mean only 0.021 0.016 0.006
Non-choice: vicarious mean only 0.011 0.019 0.016



In-Sample Performance

Label Bias Mean Squared Err Calibration Score
Expected utility: rep agent 0.009 0.014 0.046
Prospect theory: rep agent 0.009 0.013 0.050
Expected utility: hetero agents -0.054 0.014 0.008
Prospect theory: hetero agents -0.035 0.016 0.063
Non-choice: all vars 0.000 0.013 0.264
Non-choice: all hyp vars 0.000 0.013 0.336
Non-choice: hyp mean only 0.000 0.015 0.000
Non-choice: vicarious mean only 0.000 0.019 0.000
Visualizations



Out-of-Sample Performance: Interior

Label Bias Mean Squared Err Calibration Score
Expected utility: rep agent -0.061 0.026 0.366
Prospect theory: rep agent -0.065 0.027 0.360
Expected utility: hetero agents -0.103 0.034 0.237
Prospect theory: hetero agents -0.111 0.041 0.349
Non-choice: all vars -0.005 0.012 0.305
Non-choice: all hyp vars -0.007 0.013 0.344
Non-choice: hyp mean only 0.005 0.015 0.060
Non-choice: vicarious mean only -0.018 0.018 0.079
Visualizations



Out-of-Sample Performance: Triangle 2

Label Bias Mean Squared Err Calibration Score
Expected utility: rep agent 0.234 0.088 0.342
Prospect theory: rep agent 0.226 0.079 0.291
Expected utility: hetero agents 0.114 0.030 0.182
Prospect theory: hetero agents 0.110 0.024 0.079
Non-choice: all vars 0.050 0.014 0.184
Non-choice: all hyp vars 0.062 0.017 0.208
Non-choice: hyp mean only 0.077 0.020 0.063
Non-choice: vicarious mean only 0.063 0.019 0.050
Visualizations



So What?

I What can we do with predictions?
I One answer: estimate treatment effects without observing treatment
I Two treatments:

1. Increase complexity
2. Decrease stakes
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Triangle 1 to Triangle 2 (Decrease Stakes)
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Conclusion

I Utility models may not be best option for predicting treatment effects
I Next step: Adding additional benchmark using methods from Naecker and

Peysakhovich (2017)
I Can suggest improvements to utility models



Appendix



Utility Parameter Estimates
Expected utility: hetero agents Prospect theory: hetero agents
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In-Sample Performance
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Out-of-Sample Performance: Interior
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Out-of-Sample Performance: Triangle 2
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