The Model You Know: Generalizability and Predictive Power of Models of Choice Under Uncertainty

B. Douglas Bernheim Christine Exley Jeffrey Naecker Charles Sprenger

1/24/2019

Motivation

- Two important features of models:
 - Interpretability/parsimony
 - Generalizability/predictive power
- Risk preference models
 - Certainly interpretable and parsimonious
 - Known to fit well in sample but may be issues with out-of-sample prediction (eg, Camerer 1992)

Our Contribution

- Test out-of-sample performance of utility models in two settings:
 - Changing stakes
 - Increasing complexity of gambles
- Provide alternative data and methods to
 - 1. Make more accurate predictions out-of-sample
 - 2. Get better estimates of treatment effects

Typical Choice Problem

Choice Environment

- Choose between two lotteries, A and B
- Represent in two Machina triangles:
 - Triangle 1: outcomes \$1, \$10, \$30
 - exterior: up to two outcomes possible in any lotter
 - interior: up to three outcomes possible in any lottery
 - Triangle 2: outcomes \$0, \$5, \$20
 - exterior only
- ▶ 199 lottery pairs total
- ► Participants see random set of 80 pairs, shown sequentially
- ► Lottery A along legs of triangle, while lottery B is along hypotenuse

Treatments

Treatment	Question(s)
Real	Which option do you prefer? $[1 = option A, 0 = option B]$
Hypothetical	Hypothetically, which option do you prefer?
Hypothetical likelihood	Hypothetically, how likely would you be to choose Option A over Option B? [1-5]
Vicarious hypothetical	How likely would a typical Stanford undergraduate student be to choose Option A over Option B?
Subjective	Choosing which option would indicate a greater willingness to take risks? Choosing which option would indicate better judgment? Which option is more difficult to evaluate?

Utility Models

1. Expected utility with constant relative risk aversion:

$$U(p,x)=\sum_i p_i x_i^{\alpha}$$

2. Cumulative prospect theory from Kahneman and Tversky (1992):

$$egin{aligned} U(p,x;g) &= (\pi(p_3,g)-\pi(0,g))x_3^lpha \ &+ (\pi(p_2+p_3,g)-\pi(p_3,g))x_2^lpha \ &+ (\pi(p_1,g)-\pi(p_2+p_3,g))x_1^lpha \end{aligned}$$

where

$$\pi(p,g) = rac{p^g}{(p^g + (1-p)^g)^{(1/g)}}$$

Errors

Luce decision error formulation:

$$P(ext{choose A}) = rac{U(A)^{rac{1}{\mu}}}{U(A)^{rac{1}{\mu}} + U(B)^{rac{1}{\mu}}}$$

▶ $\mu \rightarrow 0$: no mistakes (ie all probabilities = 0 or 1) ▶ $\mu \rightarrow \infty$: flip a coin (ie all probabilities = $\frac{1}{2}$)

Parameter estimates

Non-Choice Data Methods: Univariate Models

Regress real choice frequency on hypothetical in triangle 1 exterior at choice problem level:

$$real_{1i} = \alpha + \beta hyp_{1i} + \varepsilon$$

Then use estimated coefficients to predict real in triangle 2 exterior from hypothetical in triangle 2 exterior:

$$\widehat{real_{2i}} = \hat{\alpha} + \hat{\beta}hyp_{2i}$$

- Repeat with vicarious hypothetical likelihood mean as predictor
- Same procedure to predict to triangle 1 interior

Non-Choice Data Methods: LASSO

- Large number of predictors:
 - Means for all hypothetical and subjective questions
 - \blacktriangleright For all Likert-scale questions, fraction of responses = 1, \leq 2, \leq 3, etc
- Use regularized regression (LASSO):

$${{{min}_eta}\sum\limits_i (y_i - eta x_i)^2 + \lambda ||eta||_2}}$$

- Regularization parameter λ set using cross-validation
- Estimation and prediction as with univariate OLS models

Prediction Metrics

Bias (average prediction error):

$$\frac{1}{N}\sum_{i}\left|\widehat{real}_{i}-real_{i}\right|$$

mean-squared prediction error (MSPE):

$$rac{1}{N}\sum_{i}|\widehat{\mathit{real}}_{i}-\mathit{real}_{i}|^{2}$$

• Calibration score is $|\beta - 1|$, with estimated β in the regression equation:

$$real_i = \alpha + \beta \widehat{real}_i + \varepsilon_i$$

Choice Probabilities

Prediction Statistics: Pooled

Label	Bias	Mean Squared Err	Calibration Score
Expected utility: rep agent	0.048	0.035	0.187
Prospect theory: rep agent	0.045	0.033	0.163
Expected utility: hetero agents	-0.024	0.023	0.085
Prospect theory: hetero agents	-0.017	0.024	0.014
Non-choice: all vars	0.012	0.013	0.267
Non-choice: all hyp vars	0.014	0.014	0.319
Non-choice: hyp mean only	0.021	0.016	0.006
Non-choice: vicarious mean only	0.011	0.019	0.016

In-Sample Performance

Label	Bias	Mean Squared Err	Calibration Score
Expected utility: rep agent	0.009	0.014	0.046
Prospect theory: rep agent	0.009	0.013	0.050
Expected utility: hetero agents	-0.054	0.014	0.008
Prospect theory: hetero agents	-0.035	0.016	0.063
Non-choice: all vars	0.000	0.013	0.264
Non-choice: all hyp vars	0.000	0.013	0.336
Non-choice: hyp mean only	0.000	0.015	0.000
Non-choice: vicarious mean only	0.000	0.019	0.000

Out-of-Sample Performance: Interior

Label	Bias	Mean Squared Err	Calibration Score
Expected utility: rep agent	-0.061	0.026	0.366
Prospect theory: rep agent	-0.065	0.027	0.360
Expected utility: hetero agents	-0.103	0.034	0.237
Prospect theory: hetero agents	-0.111	0.041	0.349
Non-choice: all vars	-0.005	0.012	0.305
Non-choice: all hyp vars	-0.007	0.013	0.344
Non-choice: hyp mean only	0.005	0.015	0.060
Non-choice: vicarious mean only	-0.018	0.018	0.079

Out-of-Sample Performance: Triangle 2

Label	Bias	Mean Squared Err	Calibration Score
Expected utility: rep agent	0.234	0.088	0.342
Prospect theory: rep agent	0.226	0.079	0.291
Expected utility: hetero agents	0.114	0.030	0.182
Prospect theory: hetero agents	0.110	0.024	0.079
Non-choice: all vars	0.050	0.014	0.184
Non-choice: all hyp vars	0.062	0.017	0.208
Non-choice: hyp mean only	0.077	0.020	0.063
Non-choice: vicarious mean only	0.063	0.019	0.050

So What?

- What can we do with predictions?
- One answer: estimate treatment effects without observing treatment
- Two treatments:
 - 1. Increase complexity
 - 2. Decrease stakes

Exterior to Interior (Increase Complexity)

Triangle 1 to Triangle 2 (Decrease Stakes)

Conclusion

- Utility models may not be best option for predicting treatment effects
- Next step: Adding additional benchmark using methods from Naecker and Peysakhovich (2017)
 - Can suggest improvements to utility models

Appendix

Utility Parameter Estimates

In-Sample Performance

Out-of-Sample Performance: Interior

Out-of-Sample Performance: Triangle 2

